
Gbin File Format Specification

prepared by: Hutton, A.

reference: GAIA-C1-TN-ESAC-AH-004-1

issue: 1

revision: 0

date: 2011-12-16

status: Issued

Abstract
Following feedback on the large amounts of memory needed to read gbin files, some
changes to the gbin file format will be made to prevent this. The opportunity is being
taken to document the format in this technical note.



CU1-MDB GAIA-C1-TN-ESAC-AH-004-1

Document History
Issue Revision Date Author Comment

1 0 2011-12-16 AH Document issued.
D 2 2011-12-13 AH Include suggestion from G. Holland for unique byte

string to separate compressed blocks.
D 1 2011-07-22 AH Updated draft, following useful feedback from J. Her-

nandez and H. Siddiqui
D 0 2011-07-19 AH First draft

Gaia DPAC Document 2



CU1-MDB GAIA-C1-TN-ESAC-AH-004-1

1 Introduction

The gbin file format is the format used by DPAC to exchange Main Database records. It is
also used as a general purpose storage format for Java objects defined in the MDB data model.
Following feedback regarding the memory consumption that took place when reading large gbin
files, the format is going to be modified to address the concerns raised. This technical note will
document the latest version of the gbin format 1

An earlier technical note [4] reviewed different strategies and serialiation techniques for reduc-
ing memory, and this document follows on from the conclusions given there.

The main motivation for the current change to the gbin format is memory performance, and the
aim is not to drastically change the format. However, we intend to take advantage of the change
to include some small practical improvements to make working with the gbin files easier (ideas
from [3, 1, 5, 2]:-

• Add some identification bytes at the start of the gbin file, and a version number, to
make it easy for code to recognise the files.

• Define a header section, which includes meta-data about the file.

In addition, to make transfers of gbin files between DPCs easier by giving data consumers
certain assurances about the data they can expect, we have defined a ‘strict’ gbin format, which
is a set of constraints on the basic format. These are described in the following section.

Our aim in this document is to provide a clear description of the format of the gbin files. A
reference implementation of code to read and write this format is available in GaiaTools.

A brief note on backward compatability: Two versions of the gbin file format have been used up
to the present time. The code in GaiaTools which can read older gbin files will not be removed,
and so if the GaiaTools code detects a file in an older gbin format, it will use the appropriate
reader for that format.

2 Uses Of Gbin Files

Gbin files are used to transport java objects defined in the MDB data model between DPCs, and
also as a convenient way of persisting these objects. The objects are written by Java applica-
tions, and read by Java applications.

1A very brief overview of the old format is given in section 9 for comparison.

Gaia DPAC Document 3



CU1-MDB GAIA-C1-TN-ESAC-AH-004-1

These two types of use represent two distinct use cases for gbin files, or in other words, two
groups of users who have different perspectives on using the files:

1. Transporting MDB records between DPCs. This is a more formal use of gbin files.
The format will be shared between distinct groups of users, where the producers
and consumers of the data are not the same. In this context, life is made easier for
the consumers by providing more constraints on the contents of the files so they
know what to expect to receive.

2. As a storage format used internally by DPCs, for example in individual projects.
It is also convenient in test cases to hold test input data. Here the producer and
consumer of the data is the same - they can make more assumptions about the data
they store in a gbin file and expect to be able to use the file in a flexible manner.

To provide the constraints needed in the first scenario, while allowing the format to be also used
in the second, we will define a ‘strict’ gbin format. This is basically a set of constraints that
must be followed when producing gbin files for transfer between DPCs. When used internally
in a DPC, these constraints can be ignored.

In brief, the strict format specifies which MDB data model must be used to serialize objects,
and that all the objects in the gbin file must be the same type. See section 6 for definition of the
strict format.

3 General Aims

Gbin files have been used in DPAC for some time, and the most general aim in this format
change besides resolving the specific memory issue discussed above, is that we can keep using
them for the same purposes as before.

However, we can pick out a few broad aims:

• Reading the gbin files should not require a large amount of memory. See section 5
for more details.

• It must be possible to read the gbin file using serial access only (in Java, we could
say it has been readable using just a java.io.InputStream as input). This facili-
ates access to data when direct access to the file may not be possible (e.g. Hadoop).

• As regards CPU requirements, it was noted in [4] that the CPU overhead involved in
reading gbin files derives principally from decompressing the data. So the general
aim as regards CPU usage is that deserialization should not add much beyond that
already needed for decompression.

Gaia DPAC Document 4



CU1-MDB GAIA-C1-TN-ESAC-AH-004-1

4 Gbin Format

FIGURE 1: Conceptual diagram of how a gbin
is written.

This section describes the overall format. The
format makes use of the Java serialization
mechanism, and so the Java language effec-
tively forms part of the format specification.
In the following text, unless bytes are explic-
itly specified, data is written using the Java
serialization mechanism.

The general structure of a gbin file is a header,
followed by one or more data sections. A gbin
file can be appended to multiple times, but
only with data sections. The header appears
just once at the top. See Figure 1 for a graph-
ical representation.

4.1 Gbin File Header

The following information appears just once,
at the start of the file.

Identification Bytes: appears only at the start
of the file (inspired by [5]):

0x89 0x47 0x42 0x49 0x4e 0x0d 0x0a 0x1a 0x0a

\211 G B I N \r \n \032 \n

Format version number: a Java int value2.
The format described in this document is ver-
sion 4 3.

File header: the header is basically a map of
key value pairs. It is preceded by a Java long value3 giving the length of header. The header
itself is a serialized java.util.HashMap of String vs Object entries. The object values should
only use types in the Java language itself. Note: the header is uncompressed, unlike the later
data sections. See table below for required header values. Additional header values can be
added if desired.

2Written using java.io.DataOutputStream
3Version 3 is an earlier draft of the format, identical except for the absence of the end of section marker

Gaia DPAC Document 5



CU1-MDB GAIA-C1-TN-ESAC-AH-004-1

StaticAttributes: a section holding any static attributes applying to the data in the gbin file.
This has the same format as the data section described below, except that in place of GaiaRoot
objects, there are GaiaRootTableAttributes objects, and the section header ‘Type’ entry is
‘StaticAttributes’. Only one such section can exist at the start of the gbin file. If a gbin file is
found having more than one such section, or a section which is not the first section, it should be
discarded, or, if being stricter, an exception thrown.

Key Type Description
MdbVersion java.lang.String The version of the MDB data model used when generat-

ing the given data, e.g. ‘10.1.0’.
DpcVersion java.lang.String The version of the DPC data model used when generating

the given data. This should be given only if DPC data is
stored in the gbin file, and should not be present if IsStrict
is true.

IsStrict java.lang.Boolean If this gbin file follows the strict specification.
ObjectType java.lang.String The fully qualified class name of the GaiaRoot objects

serialized in the gbin file. If IsStrict is true, then all
GaiaRoot objects must be of this type. If IsStrict is false
then this entry is informative only.

ResetThreshold java.lang.Long The threshold number of bytes at which reset was called
when serializing the data for the ObjectOutputStream.
This is for information only, and is not required to de-
serialize the data. It allows for validation code to check
a gbin file for compatability with the memory resources
available in a processing system.

CreationTime java.lang.Long Date/Time the gbin file was first created. Stored as num-
ber of ms between current time and midnight, January 1,
1970 UTC.

4.2 Data Sections

After the header described above, one or more data sections can be appended to an existing gbin
file. Each data section is compressed using the DEFLATE algorithm4. The data sections have
the following structure:

Section header: A serialized java.util.HashMap of String vs Object entries. Only two
entries are permitted here, both required. ‘Type’ must have a String value of either ‘Data’ or
‘StaticAttributes’. ’Count’ must equal the number of gbin objects stored in this section.

4Written in Java using a java.util.zip.DeflaterOutputStream. The compression level is left to
the user to decide. Most of the time the default compression will probably be used, though some users may be
interested in setting it to NO_COMPRESSION to avoid CPU overhead associated with compression/decompression
when storing data locally.

Gaia DPAC Document 6



CU1-MDB GAIA-C1-TN-ESAC-AH-004-1

Section data: One or more serialized GaiaRoot objects. The objects are written one after the
other. After the final object there a serialized String value “END” is written. Please see section 5
for details regarding the serialization.

End of section marker: After the compressed data, a series of 8 bytes, all with the value 0xAA are
written. This marker exists to allow for easy seeking with the file for data blocks. The marker
bytes have been chosen to be repetitive so to be unlikely to appear within the compressed data
itself5.

It is the responsability of the producer, when appending data to an existing gbin file, to ensure
the appended data is compliant with the existing format.

5 Serialization Protocol

As described in the previous section, the GaiaRoot objects are stored as serialized objects,
compressed using the DEFLATE algorithm.

The document [4] discussed the issues surrounding using the Java serialization mechanism to
serialize these objects. The conclusion there was that by continuing to use the default java.io
.ObjectOutputStream and by resetting the stream periodically, the build up of a large handle
table by the serialization classes (and consequent use of memory) could be avoided.

In [4] tests were made by resetting the ObjectOutputStream every n objects. Since object size
can vary, a more general approach would be to reset the stream whenever the number of bytes
written (ignoring any compression) exceeds a certain threshold.

The number of serialized bytes will be approximately related to the actual memory used by Java
to store the objects in memory. A choice of the specific threshold value will be slightly arbitrary.
The number should not be too big, i.e. in gigabytes, as memory use for large gbin files would
be unacceptable, nor should it be too small, in kilobytes, as it would be inefficient.

In some scenarios, the user may wish to choose a specific value, for example a very large value,
because they are concerned about avoiding duplicates in the object graph. In other cases, for
DPC transfers for example, it is important the consumer DPC does not have to set aside large
amounts of memory to ingest data.

Therefore, a practical value for the threshold will be chosen, which will be obligatory for the
strict gbin format, and which will be the default in general for gbin files. In the rare case that a
developer wants to change the threshold, they can do so by explicity using a non-default value.

5No guarantee is given that it will not appear in the compressed data.

Gaia DPAC Document 7



CU1-MDB GAIA-C1-TN-ESAC-AH-004-1

We define the default value here to be 50Mb. This is a figure based on practical experience and
which has been found to be workable.

The Java serialization mechanism is not without its critics, and other serialization protocols
may be able to improve the performance slightly, or to reduce redundancy in the data (some
redunancy is a consequence of resetting the stream). However, countering these points of view
are the following:

• The format is intended to be as simple as possible. Although some performance im-
provements would be possible by using a custom serialized format, our preference
is to avoid this, keeping the code simpler, ensuring the code can be maintained by a
broad pool of developers who may not be familiar with serialization techniques.

• Techniques which avoid redundancy (caused by resetting the ObjectOutputStream
) may not be so necessary when the data is compressed in a DeflaterOutputStream
, which will minimise this effect.

• The existing gbin format has been used for some time now, and with it the Java seri-
alization mechanism. Users may have certain expectations regarding Java serializa-
tion (e.g. use of transient fields, serialVersionUID etc). A change in serialization
protocol may have various unexpected side effects that need a lot of existing code
to be reviewed.

• The Java serialization format brings with it the cross-platform portability of Java. It
avoids having to deal with endianism, floating point value and character encoding
etc.

6 Strict Gbin Files

The strict gbin format will impose the following additional constraints on the file format:

• The file header field MdbVersion must be present, and must refer to an official MDB
release.

• Only MDB data model objects may be in the file - no DPC objects may be present.

• No DpcVersion file header field must be present.

• The file header field IsStrict must be present, and must be true.

• The file header field ResetThreshold value used for resetting the ObjectOuput-
Stream must not be increased above the default value of 50 ∗ 1024 ∗ 1024 (50Mb),
to ensure a consuming user does not need excessive amounts of memory to read the
file.

Gaia DPAC Document 8



CU1-MDB GAIA-C1-TN-ESAC-AH-004-1

• The file header field ObjectType must be present, and specifies the data model class
file of the objects in the file.

• All objects in the gbin file must be of type ObjectType.

• All objects in the gbin file must be serialized using the implementation classes in
the MDB jar i.e. no custom implementations.

• A gbin file must contain at least one object.

7 Acronyms used in this document

The following table has been generated from the on-line Gaia acronym list:

Acronym Description
CPU Central Processing Unit
DPAC Data Processing and Analysis Consortium
DPC Data Processing Centre
MDB Main DataBase
UTC Coordinated Universal Time

8 Reference Documents

[1] A brief look at file format design. http://decoy.iki.fi/texts/filefd/
filefd.

[2] Designing your own format. http://www.fileformat.info/mirror/egff/
ch08_07.htm.

[3] File format design. http://www.magicdb.org/filedesign.html.

[4] A. Hutton. Note on gbin read performance. http://gaia.esac.esa.int/
dpacsvn/DPAC/CU1/docs/TechNotes/GbinTechNote-AH-002, March 2011.

[5] A. McFadden. Designing file formats. http://www.fadden.com/techmisc/
file-formats.htm.

Gaia DPAC Document 9

http://decoy.iki.fi/texts/filefd/filefd
http://decoy.iki.fi/texts/filefd/filefd
http://www.fileformat.info/mirror/egff/ch08_07.htm%20
http://www.fileformat.info/mirror/egff/ch08_07.htm%20
http://www.magicdb.org/filedesign.html
http://gaia.esac.esa.int/dpacsvn/DPAC/CU1/docs/TechNotes/GbinTechNote-AH-002
http://gaia.esac.esa.int/dpacsvn/DPAC/CU1/docs/TechNotes/GbinTechNote-AH-002
http://www.fadden.com/techmisc/file-formats.htm
http://www.fadden.com/techmisc/file-formats.htm


CU1-MDB GAIA-C1-TN-ESAC-AH-004-1

9 Appendix: Former Gbin Format

For comparison, the previous version of the gbin format, version 2, is presented in Figure 2.

The main issues regarding the previous version are:

1. There is a complex nesting structure of objects - the embedded byte array and Ar-
rayList make reading the data progressively, and thereby using less memory, very
difficult.

2. The inner ObjectOutputStream is written without resetting the handle table. This
means that for a large file, the handle table can grow very large. A large amount
of memory must then be used to read the file, which may not be available on the
consumer system.

3. There are no identification bytes or file header section with file meta data. Some
information was embedded in the Zip entry file name, but not in an extensible way.

Gaia DPAC Document 10



CU1-MDB GAIA-C1-TN-ESAC-AH-004-1

FIGURE 2: Graphical representation of how a v2 gbin file is written.

Gaia DPAC Document 11


	Introduction
	Uses Of Gbin Files
	General Aims
	Gbin Format
	Gbin File Header
	Data Sections

	Serialization Protocol 
	Strict Gbin Files 
	Acronyms used in this document
	Reference Documents 
	Appendix: Former Gbin Format 

